19.4 WATER-TABLE

The water table is the upper surface of the zone of saturation in the ground, where all the pore lately filled with water. It represents the boundary between The water table is the upper surface of the zone of saturation. It represents the boundary between and cracks in soil and rock are completely filled with water. It represents the boundary between and cracks in soil and rock are completely filled with water table can vary dependent. and cracks in soil and rock are completely filled with water table can vary dependent unsaturated soil above and saturated soil below. The level of the water table can vary dependent unsaturated soil above and saturated soil below. The level of the water table can vary dependent unsaturated soil above and saturated soil below. unsaturated soil above and saturated soil below. The level of the unsaturated soil above and saturated soil below. The level of the unsaturated soil above and saturated soil below. The level of the unsaturated soil above and saturated soil below. The level of the unsaturated soil above and saturated soil below. The level of the unsaturated soil below. The level o on factors like rainfall, topography, soil type, and seasonal on factors like rainfall, topography, soil type, and seasonal on factors like rainfall, topography, soil type, and seasonal on factors like rainfall, topography, soil type, and seasonal on factors like rainfall, topography, soil type, and seasonal on factors like rainfall, topography, soil type, and seasonal on factors like rainfall, topography, soil type, and seasonal on factors like rainfall, topography, soil type, and seasonal on factors like rainfall. reaches the saturated zone, raising the water table.

For example, in a wetland or low-lying area, the water table may be just below or even For example, in a wetland or low-lying area, the soil surface, causing water to accumulate and form marshes or swamps. In contrast table may lie deep underground, making at the soil surface, causing water to accumulate and to in arid regions or during droughts, the water table may lie deep underground, making wells as a pecially in agricultural areas, often to in arid regions or during droughts, the water table into a gricultural areas, often tap into necessary to access groundwater. Pumped wells, especially in agricultural areas, often tap into necessary to access groundwater. necessary to access groundwater. Pumped wells, especially water stored below the water table, and excessive withdrawal can cause the table to drop a the water table is a critical conwater stored below the water table, and excessive with phenomenon known as groundwater depletion. Thus, the water table is a critical concept in hydrology, agriculture, and water resource management.

Groundwater and Water Table

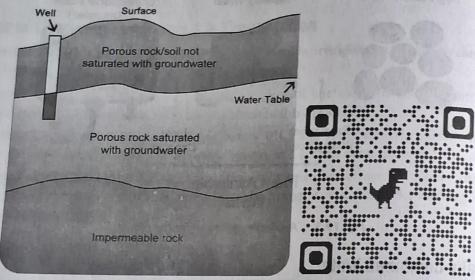


Fig. 19.4. Illustration representing the water table. Scan the QR code to check the state-wise ground water level in India (at Niti Aayog).

India, with its vast geographical area and agrarian economy, relies heavily on groundwater resources, which serve as the main source of drinking water for over 85% of the rural opulation and nearly 60% of irrigation needs. The average depth to the water table in India enerally ranges from 5 to 10 meters below ground level (bgl). Water table levels in India ary significantly by region. In coastal areas, especially along the west and parts of the east east, groundwater is generally shallow, often less than 5 meters below ground level (bgl). central and peninsular India, water levels typically range between 5 to 10 meters bgl, th some regions reaching 10-20 meters. The eastern states commonly exhibit shallow ter tables around 2 to 5 meters bgl, while the northern plains, particularly the outer plain ions, have some of the shallowest water levels, often less than 2 meters bgl.

However, the water table in India is declining at an alarming rate, especially in northwestern es like Punjab, Haryana, Rajasthan, and parts of Uttar Pradesh. According to the Central

Water Board (CGWB), as of receit assessments, more than 60% of fation touries A Wall of over-exploited groundwater levels, where annual extraction exceeds recharge.

Contributing to the Lowering of Water Table in India

Over-Extraction for Irrigation; Unsustainable agricultural practices, particularly the over-the of water-intensive crops like rice and sugarcane in dry regions, commune amounts of groundwater. easive amounts of groundwater,

; Unregulated Borewells: The widespread use of electric and diesel pumps for Caregordwater extraction, without regulation or metering, leads to uncontrolled depletion.

Urbanization and Industrialization: Expanding cities and industries require large volumes of water, often drawn from aquifers, with little or no recharge infrastructure in

Rainwater Infiltration: Due to paved surfaces, deforestation, and soil compaction, natural rainwater infiltration into the ground is severely reduced, affecting techarge rates.

6 Climate Change: Erratic monsoon patterns, increased temperature, and reduced snowfall in the Himalayas are affecting both surface runoff and groundwater recharge eveles.

6. Lack of Public Awareness: In many areas, there's limited understanding of groundwater as a finite resource, leading to careless or excessive usage.

Nethods to Replenish the Water Table

- 1. Rainwater Harvesting: Capturing and storing rainwater from rooftops and open spaces in percolation pits, tanks, or injection wells helps recharge groundwater directly.
- 2. Recharge Wells and Check Dams: Structures like check dams, gabions, and recharge shafts slow surface runoff, allowing water to percolate into aquifers.
- 3. Watershed Management: Integrated development of eatchment areas through afforestation, contour bunding, and small storage structures improves water retention and infiltration.
- 4. Regulated Water Use: Promoting micro-irrigation techniques like drip and sprinkler systems can drastically reduce groundwater use in agriculture.
- 5. Crop Diversification: Shifting from high water-consuming crops to climate-resilient, low water-requirement crops (like millets and pulses) can help balance water demand.
- 6. Aquifer Mapping and Monitoring: Advanced remote sensing and GIS-based tools are being used to map aquifers, monitor usage, and support decision-making for groundwater management.
- 7. Public Participation and Policy Support: Groundwater sustainability requires strong community involvement, supported by laws, subsidies for rainwater harvesting, and education campaigns to promote responsible usage.